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Working with multiscale asymptotics
Solving weakly nonlinear oscillator equations on long-time intervals
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Abstract. This paper surveys, compares and updates techniques to obtain the asymptotic solution of the weakly
nonlinear oscillator equation ÿ+ y+ εf (y, ẏ)= 0 as ε→ 0 and for corresponding first-order vector systems. The
solutions found by the regular perturbation method generally feature resonance and so break down as t → ∞.
The classical methods of averaging and multiple scales eliminate such secular behavior and provide asymptotic
solutions valid for time intervals of length t = O(ε−1). The renormalization group method proposed by Chen
et al. [Phys. Rev. E 54 (1996) 376–394] gives equivalent results. Several well-known examples are solved with these
methods to demonstrate the respective techniques and the equivalency of the approximations produced. Finally,
an amplitude-equation method is derived that incorporates the best features of all these techniques. This method
is both straightforward to automate with a computer-algebra system and flexible enough to allow the forcing f

to depend on the small parameter.
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1. Introduction

Mathematical models displaying nonlinear oscillations are ubiquitous in the vast scientific lit-
erature. Through the years, a number of specialized techniques have evolved to analyze these
oscillatory problems. Having arisen from differing needs, these techniques all appear to be
(and are treated as) fundamentally different in character. For the class of problems discussed
in this paper, however, we will show that these differences are largely superficial.

The purpose of this paper is threefold. First, we will (re)acquaint readers with the popu-
lar methods for asymptotically solving weakly nonlinear oscillator equations. Second, we will
demonstrate the equivalency of these different methods. Last, we will synthesize the best fea-
tures of the techniques presented to produce an efficient amplitude-equation approach. We
begin our discussion with the regular perturbation expansion: the most obvious, but also most
limited, path to an asymptotic solution.

Asymptotically solving the autonomous, weakly nonlinear oscillator equation

ÿ+y+ εf (y, ẏ)=0, (1.1)
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for f smooth and ε small and positive, is a classical problem of nonlinear oscillations [1, Part
2]. Using the initial conditions

y(0)=1 and ẏ(0)=0, (1.2)

one naturally seeks an approximate solution as a truncation of the unique formal power series

yε(t)=
∞∑

j=0

εj yj (t), (1.3)

that one obtains by expanding in ε about the solution

y0(t)= cos t

of the reduced (ε = 0) problem. Regular perturbation theory shows how to find successive
terms in the series by equating coefficients of like powers of ε in the differential equation and
initial conditions [2]. The expansion for y directly implies those for ẏ and ÿ, while the Ma-
claurin expansion for f (yε, ẏε) is

f (yε, ẏε)=f (y0, ẏ0)+ ε
[
fy(y0, ẏ0)y1 +fẏ(y0, ẏ0)ẏ1

]+O(ε2).

From the coefficients of εj for j =0,1, and 2, we thereby obtain a sequence of linear initial-
value problems

ÿ0 +y0 =0, y0(0)=1, ẏ0(0)=0,

ÿ1 +y1 +f (y0, ẏ0)=0, y1(0)=0, ẏ1(0)=0

and
ÿ2 +y2 +fy(y0, ẏ0)y1 +fẏ(y0, ẏ0)ẏ1 =0, y2(0)=0, ẏ2(0)=0.

More generally, the coefficient yj for each j ≥1 will satisfy an initial-value problem

ÿj +yj =gj−1(y0, ẏ0, . . . , yj−1, ẏj−1),

with trivial initial conditions at t=0 and with the forcing gj−1 being known successively. Var-
iation of parameters immediately implies that

yj (t)=
∫ t

0
sin(t− s)gj−1(y0(s), . . . , ẏj−1(s))ds, j ≥1. (1.4)

Thus,

y1(t)=−
∫ t

0
sin(t− s)f (cos s,− sin s)ds,

and

y2(t)=
∫ t

0
sin(t− s)

[
fy(cos s,− sin s)

∫ s

0
sin(s− r)f (cos r,− sin r)dr

+ fẏ(cos s,− sin s)
∫ s

0
cos(s− r)f (cos r,− sin r)dr

]
ds.

Using Gronwall-inequality estimates, one may easily show that the series (1.3) obtained (as
well as those for the derivatives) converges on any finite t interval for ε sufficiently small
[3, Section 4.3], [4, Sections 3.2, 3.3]. Without significant change, the stated conclusions also
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apply to nonautonomous equations, ÿ+ y+ εf (y, ẏ, t, ε), [5, Chapters 2–3]. To illustrate the
complications that can arise when t becomes unbounded, let us consider some examples.

We first examine the nonautonomous, linear equation

ÿ+y= ε sin t. (1.5)

Given the initial values (1.2), the exact solution is

y(t)= cos t+ ε

2
(sin t− t cos t). (1.6)

Considered as a two-term regular perturbation series, (1.6) is correct but only asymptoti-
cally valid for finite t because of the secular term t cos t in the O(ε) coefficient. For times
t�O(ε−1), the magnitude of the second term in the series exceeds that of the first. This com-
plication results because the forcing, ε sin t , lies in the nullspace of the unperturbed harmonic
operator.

A singular perturbation problem arises when the regular perturbation method is no longer
uniformly valid. The technique might break down, for example, either for large t-values (as
for (1.6)) or in the presence of boundary or interior layers [6, Chapter 1], [7, Chapter 10].
Such problems are generally solved using asymptotic series [8, Chapter 8], [9, Chapter 12],
[10], for which one typically uses only the first few terms. We naturally insist that the accu-
racy of the successive approximations defined by the truncations improve in the ε→ 0 limit.
For (1.6), the asymptotic ordering no longer holds when t becomes unbounded, since the sec-
ond term ultimately dominates the first. One calls the second term secular as t→∞, because
it increases without bound, thus violating the implicit assumption that successive terms in an
asymptotic expansion remain of decreasing size. The appearance of secular terms heralds the
unsuitability of the regular perturbation expansion when t becomes large.

A second prototype example, the Duffing equation,

ÿ+y+ εy3 =0, (1.7)

describes the motion of a slightly nonlinear spring. Using the initial conditions (1.2), the two-
term regular perturbation solution is

yε(t)= cos t+ ε
(

−3
8
t sin t− 1

32
cos t+ 1

32
cos 3t

)
+O

(
ε2t2

)
. (1.8)

This unbounded approximation is unacceptable as t→∞ because a bounded, periodic solu-
tion is given in terms of elliptic integrals. Specifically, one can integrate (1.7) once to get a
conserved energy and then separate variables to get the implicit solution

t=∓
∫ 1

y

dr√
(1− r2)(1+ ε

2 (1+ r2))

, (1.9)

depending smoothly on ε. An elementary phase-plane analysis shows that the solution has the
ε-dependent period

T (ε)=2
∫ 1

−1

dr√
(1− r2)(1+ ε

2 (1+ r2))

=2π
(

1− 3
8
ε+ 57

256
ε2 +O(ε3)

)
.

This suggests that the regular perturbation approximation incorrectly accounts for the natural
frequency, tacitly assuming it to be one, rather than

2π
T (ε)

=1+ 3
8
ε− 21

256
ε2 +O(ε3). (1.10)
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The regular perturbation method breaks down when t→∞, due to the appearance of spu-
rious secular terms. We call them spurious because they are an artifact of the perturbation
procedure, not inherent in the problem. One must therefore find a way to exorcize these spu-
rious terms from the regular perturbation series if it is to retain its value as an asymptotic
expansion for large t . This complication has been a long-recognized phenomenon in celestial
mechanics [11, Vol. I, Part 2], [12, Chapters 6–10]. Lindstedt, [13], cleverly introduced the nat-
ural strained coordinate

t̃= 2π
T (ε)

t≡ (1+ ε�(ε))t, (1.11)

using an unspecified asymptotic series

�(ε)∼�0 + ε�1 + ε2�2 +· · · (1.12)

for the scaled frequency. The individual terms of (1.12) are determined successively, together
with a generalized asymptotic expansion [14], [15, pp. 24–27],

y(t̃, ε)∼y0(t̃)+ εy1(t̃)+· · · (1.13)

for the solution, when one insists that successive yk’s be periodic functions of t̃ . This condi-
tion implies selection criteria for each coefficient �k−1: to eliminate resonant forcing in the
resulting differential equation for the corresponding yk. In terms of t̃ , y satisfies the trans-
formed initial-value problem

(1+ ε�(ε))2 d2y

dt̃2
+y+ εy3 =0, y(0)=1,

dy
dt̃
(0)=0. (1.14)

Applying the regular perturbation process to (1.14) leads to a sequence of linear problems,
beginning with

d2y0

dt̃2
+y0 =0, y0(0)=1,

dy0

dt̃
(0)=0

and

d2y1

dt̃2
+y1 +2�0

d2y0

dt̃2
+y3

0 =0, y1(0)= dy1

dt̃
(0)=0.

Since y0(t̃)= cos t̃ , y1 must be a periodic solution of

d2y1

dt̃2
+y1 =2�0y0 −y3

0 ≡
(

2�0 − 3
4

)
cos t̃− 1

4
cos 3t̃ .

The complimentary solutions are linear combinations of cos t̃ and sin t̃ , so resonant solutions
arise if and only if the forcing term includes multiples of either of them. This solvability, or
Fredholm alternative, consideration specifies the resonant terms that we need to eliminate in
(1.13).

To avoid secular behavior in y1, we must pick �0 =3/8 to uniquely obtain

y1(t̃)=− 1
32

(
cos t̃− cos 3t̃

)
.

The process of successively defining the terms of the series for y and for � can be continued
to any order. At the next stage, one gets �1 =− 21

256 and

y2(t̃)= 1
1024

(
23 cos t̃−24 cos 3t̃+ cos 5t̃

)
.
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Note that the selections for �0 and �1 agree with the ε and ε2 coefficients in the power
series (1.10) for the frequency. Using the truncated series suggests that one could interpret
the resulting approximation as a multi-time expansion for a finite number of times tk ≡ εk t ,
k=0,1,2, . . . , [4, Section 4.8].

A third example is the slightly damped linear oscillator described by

ÿ+y+2εẏ=0. (1.15)

The unique solution of the initial-value problem (1.15), (1.2) is

yε(t)= e−εt
(

cos(
√

1− ε2t)+ ε√
1− ε2

sin(
√

1− ε2t)

)
.

It is critical to note that it depends on both the slow time σ =εt , which describes its ultimate
decay, and the fast time η=

√
1− ε2t , which scales its damped oscillations. Neither the regular

perturbation approach nor its modification as the method of strained coordinates will suffice
to provide the asymptotic solution on long time intervals, though the regular expansion pro-
cedure is adequate for t finite and ε sufficiently small.

In the remainder of this paper we present various ways to improve upon the regular per-
turbation results. In Section 2, we discuss the method of multiple scales. To prepare for later
sections, we detour in Section 3 to reformulate (1.1) as a vector system. The classical method
of averaging is considered in Section 4. In Section 5, we explore the renormalization group
method, recently popular in the physics literature [16]. Lastly, we present our own synthesis
and extension of these disparate methods in what we refer to as the amplitude equation tech-
nique (see also [17], where the method is discussed in greater detail and applied to a wider
variety of examples). The amplitude-equation technique is quite easily automated with a com-
puter-algebra system. Additionally, one may use the amplitude equations to find ε-dependent
frequencies for such weakly nonlinear oscillators, since their rest points provide the radius of
any limit cycle and its frequency.

2. Multiple scales

The method of multiple scales, popularly known as two-timing, was primarily developed post-
Sputnik at Caltech by Kevorkian and Cole [18, Chapter 4], [19]. Kuzmak [20] developed sim-
ilar ideas for certain strictly nonlinear oscillators. Multiple Scales has been successfully and
extensively applied throughout the sciences for over forty years. We shall illustrate the method
by applying it to the oscillator problem (1.1).

We seek an asymptotic solution using the formal two-time expansion

yε(η, σ )∼y0(η, σ )+ εy1(η, σ )+ ε2y2(η, σ )+· · · (2.1)

for a fast time

η≡ (1+ ε2ω(ε))t,

with some power series

ω(ε)=ω0 +ω1ε+· · · ,
and the slow time

σ = εt.
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The series for y and ω will be obtained termwise in a coordinated manner, treating η and σ

as independent variables. Strained coordinates is thereby a special case of multiple scales that
corresponds to using the single linearly combined time η+ �̃(0)σ ≡ (1+ ε�̃(ε))t .

Applying the chain rule, we find that the second derivative is

ÿ=
(

1+ ε2ω(ε)
)2 ∂2y

∂η2
+2ε

(
1+ ε2ω(ε)

) ∂2y

∂η∂σ
+ ε2 ∂

2y

∂σ 2
,

so a Maclaurin expansion in ε imples the first three terms of (2.1) must satisfy

∂2y0

∂η2
+y0 =0, (2.2)

∂2y1

∂η2
+y1 =−

[
2
∂2y0

∂η∂σ
+f

(
y0,

∂y0

∂η

)]
(2.3)

and

∂2y2

∂η2
+y2 =−

[
2
∂2y1

∂η∂σ
+2ω0

∂2y0

∂η2
+ ∂2y0

∂σ 2
+ ∂f

∂y

(
y0,

∂y0

∂η

)
y1

+∂f
∂ẏ

(
y0,

∂y0

∂η

)(
∂y1

∂η
+ ∂y0

∂σ

)]
. (2.4)

This sequence of equations may be continued to any order in ε. We collapse the notation
by writing

L [yk]=gk−1(η, σ ), k≥1, (2.5)

for the operator L ≡ ∂2

∂η2 + 1 and forcings gk−1 known successively in terms of y0, y1, . . . ,
yk−1. We will solve Equations (2.5) subject to initial conditions that follow from expanding
y(0)=yε(0,0)=1 and

ẏ(0)=
(

1+ ε2ω(ε)
) ∂yε
∂η
(0,0)+ ε ∂yε

∂σ
(0,0)=0

as power series in ε. The bounded coefficient yk will be specified by eliminating resonance in
the forcing gk−1.

Using polar coordinates for convenience, we observe that the homogeneous, leading-order
equation (2.2) has the solution

y0(η, σ )=A0(σ ) cos(η+φ0(σ )), (2.6)

with the amplitude, A0, and the phase shift, φ0, as “constants” of the integration with respect
to η. They remain free functions of the slow time σ , except for the initial values A0(0)=1 and
φ0(0)=0. At this stage, we introduce the shifted phase

	≡η+φ0(σ ),

so that ∂
∂η

= ∂
∂	

and y0 =A0 cos	. For k=1, (2.5) can then be rewritten as

L [y1]=g0(	,σ )≡2A0
dφ0

dσ
cos	+2

dA0

dσ
sin	−f0(A0,	),

where f0(A0,	)≡f (A0 cos	,−A0 sin	). Its solution takes the form

y1(	,σ )=A1(σ ) cos	+B1(σ ) sin	+y(p)1 (	,σ ) , (2.7)
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for any particular solution y
(p)

1 (	,σ ). Since g0 is a 2π -periodic function of 	, it can be
expanded in a Fourier series. Thus, one can invoke the Fredholm alternative to show that sec-
ular terms occur in y1 unless g0 is orthogonal to both linearly independent solutions, cos	
and sin	, of L[y]=0. We therefore require that first-order harmonics be absent in the Fourier
expansion for g0(	,σ ). The Fourier series for f0(A0,	) is

f0(A0,	)=α0 (A0)+2
∞∑

n=1

(αn (A0) cosn	+βn (A0) sinn	) ,

where the cosine and sine coefficients are

αn (A0)= 1
2π

∫ 2π

0
f0(A0,	) cosn	 d	≡〈f0(A0,	) cosn	〉 (2.8)

and

βn (A0)= 1
2π

∫ 2π

0
f0(A0,	) sinn	 d	≡ 〈

f0(A0,	) sinn	
〉
. (2.9)

Here we use the traditional notation

〈g(	,σ)〉= 1
2π

∫ 2π

0
g(	,σ)d	 (2.10)

for the constant average of a 2π -periodic function of 	. To eliminate resonance, we select the
unspecified multiples 2 dA0

dσ and 2A0
dφ0
dσ , of sin	 and cos	, respectively, in g0, to satisfy the

nonlinear triangular system

A0
dφ0

dσ
=α1(A0), (2.11)

dA0

dσ
=β1(A0), (2.12)

which follows from the orthogonality conditions

〈g0(	,σ ) cos	〉= 〈
g0(	,σ ) sin	

〉=0.

The system (2.11), (2.12) will be solved subject to φ0(0)=0 and A0(0)=1.
The initial-value problem for the planar system (2.11), (2.12) is uniquely solvable near

σ =0. In the corresponding phase plane, it reduces to integrating

dφ0

dA0
= α1(A0)

A0β1(A0)

along the trajectory uniquely determined by the initial values. If β1 (A0)≡0, we have A0(σ )≡
1 and φ0(σ )=α1(1)σ . Otherwise, we take A0 as the independent variable to locally provide
the implicit solution

σ =
∫ A0

1

dr
β1(r)

, (2.13)

φ0(σ )=
∫ A0

1

α1(r)

rβ1(r)
dr. (2.14)



308 B. Mudavanhu et al.

As long as A0(σ ) remains defined, the limiting asymptotic solution y0(	,σ ) is given by (2.6).
If the solution to (2.12) continues to exist as σ → ∞, the rest point, A0(∞), attained must
be the nearest zero of β1 below 1 (or, respectively, above 1) if β1(1) < 0 (or β1(1) > 0). If
this is an asymptotically stable rest point, the exponential decay will provide an appropriate
limiting approximation, y0, for all t ≥ 0. We always determine y0 on some t = O(ε−1) inter-
val, beyond the t =O(1) interval where regular perturbation theory is justified. It no longer
suffices to solve successive linear systems, however; the nonlinear system (2.11), (2.12) now
becomes basic.

Knowing A0 and φ0, (2.5) for k=1 becomes

L [y1]= g̃0(	,σ )≡2α1(A0) cos	+2β1(A0) sin	−f0(A0,	),

where g̃0 is a nonresonant forcing. We now seek a particular solution,

y
(p)

1 (	,σ )=u(A0,	) cos	+A0 v(A0,	) sin	, (2.15)

where variation of parameters implies that the coefficients u and v must satisfy

∂u

∂	
=f0(A0,	) sin	−β1 (A0) , (2.16)

−A0
∂v

∂	
=f0(A0,	) cos	−α1 (A0) . (2.17)

We shall integrate these ODEs subject to the auxiliary conditions
∫ 2π

0
u(A0,	)d	=

∫ 2π

0
v(A0,	)d	=0, (2.18)

so that u and v will each have a zero average. Thus,

y1(	,σ )= [A1(σ )+u(A0,	)] cos	+ [B1(σ )+A0 v(A0,	)] sin	. (2.19)

The particular solution (2.15) may contain first harmonic terms that one could absorb into
the constants A1(σ ) and B1(σ ). We choose this particular solution, however, since it simpli-
fies the derivation of the evolution equations for A1 and B1. Making this choice, of course,
also affects the initial values A1(0) and B1(0).

To complete the O(ε) approximation, y1, we specify the evolution of A1(σ ) and B1(σ ) by
eliminating resonant terms (i.e., first harmonics) from (2.5) for k=2. We therefore impose the
nonsecularity (orthogonality) conditions

〈g1(	,σ ) cos	〉=〈g1(	,σ ) sin	〉=0.

This provides the linear, triangular system

dA1

dσ
− dβ1

dA0
A1 =B (A0) , (2.20)

dB1

dσ
− β1

A0
B1 =

(
α1

A0
− dα1

dA0

)
A1 +ω0A0 −A (A0) , (2.21)

where

(A (A0) ,B (A0))= 1
2π

∫ 2π

0

(
u(A0,	)

∂f0

∂A0
−v(A0,	)

∂f0

∂	

)
(cos	, sin	) d	.
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For a detailed derivation of (2.20) and (2.21), we refer the interested reader to [18, Section
4.2.5], [21] or [22]. The needed initial conditions A1(0) and B1(0) are found from y1(0,0)=0
and ∂y1

∂	
(0,0)=− ∂y0

∂σ
(0,0).

Since dσ = dA0
β1(A0)

, an integration determines A1 as a function of A0, viz.

A1(A0)=β1(A0)

[
A1(1)
β1(1)

+
∫ A0

1

B(r)
β2

1 (r)
dr

]
(2.22)

(unless β1 (A0)≡0, when A1(σ )=A1(0)+B(1)σ ). Knowing A1,

B1(A0)=A0

[
B1(1)+

∫ A0

1

1
β1(r)

[
ω0 −A1(r)

d
dr

(
α1(r)

r

)
− A(r)

r

]
dr

]
. (2.23)

This determines y1(	,σ ) as long as A0 is defined. However, it involves resonance as σ →∞,
where β1 vanishes, unless we select

ω0 =
(
A1(A0)

d
dA0

(
α1 (A0)

A0

)
+ A(A0)

A0

)∣∣∣∣
A0(∞)

. (2.24)

Higher-order terms in the series for y and ω follow analogously, without complication. We
recover the regular perturbation result (1.3) when we re-expand the multiple scale expansion
(2.1) asymptotically for finite t ’s. Thus, multiple scales extends the regular perturbation result,
which is based on a naive expansion, to a longer time interval by appropriately using the solu-
tion of the nonlinear system (2.11), (2.12) for the limiting amplitude and phase shift. We point
out that [23] provides a proof of two-timing’s asymptotic correctness for bounded σ . To fix
ideas, we now demonstrate the procedure.

As a first example, recall Duffing’s equation, (1.7). The forcing is f (y, ẏ)=y3, so

f0 (A0,	)= 3
4
A3

0 cos	+ 1
4
A3

0 cos 3	.

By inspection, the first-harmonic Fourier coefficients are α1 (A0)= 3
8A

3
0 and β1 (A0)=0, so A0

and φ0 must satisfy

dA0

dσ
=0, and

dφ0

dσ
= 3

8
A2

0.

Since A0(0)=1 and φ0(0)=0, we find the unique limiting solution

y0(η, σ )= cos
(
η+ 3

8
σ

)
,

in agreement with the Poincaré-Lindstedt method. At O(ε), we obtain

y1(	,σ )=A1(σ ) cos	+B1(σ ) sin	+ 1
32
(cos 3	− cos	) ,

where A1 and B1 must satisfy the decoupled problems

dA1

dσ
=0, A1(0)= 5

32
,

and

dB1

dσ
=ω0 + 21

256
, B1(0)=0.
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B1(σ ) will be bounded as σ →∞ if and only if we choose

ω0 =− 21
256

.

Thus the asymptotic solution to O(ε) is

y(t)= cos	+ ε

32
(cos 3	− cos	)+O(ε2),

where

	=
(

1+ 3
8
ε− 21

256
ε2 +O(ε3)

)
t.

This approximation is valid for t=O(ε−1).
As a second example, recall the linear oscillator (1.15). The forcing is f (y, ẏ)=2ẏ, so

f0 (A0,	)=−2A0 sin	,

has the first Fourier coefficients α1 (A0)=0 and β1 (A0)=−A0. Thus,

dA0

dσ
=−A0 and

d�
dσ

=0.

Because A0(0)=1 and φ0(0)=0,

A0(σ )= e−σ and φ0(σ )=0.

Proceeding further, A1 and B1 must satisfy

d
dA0

(
A1 (A0)

A0

)
=0, A1(1)=0,

and

d
dA0

(
B1 (A0)

A0

)
=− 1

A0

(
ω0 + 1

2

)
, B1(1)= 1

2
.

Thus A1(A0)≡0, and B1(A0) will be secular as σ →∞ unless

ω0 =−1
2
.

Then, B1(A0)= 1
2A0, so the approximate solution is

y(t)= e−σ (cos	+ ε sin	)+O(ε2),

where

	=
(

1− 1
2
ε2 +O(ε3)

)
t.

This solution is valid for all t ≥0 since A0 decays exponentially to its trivial rest point.
In [24], van der Pol developed a new method to obtain the asymptotic solution of the

(since-called) van der Pol equation

ÿ+y+ ε(y2 −1)ẏ=0, (2.25)
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which he used to model electrical and physiological oscillations. We shall seek an asymptotic
solution valid for t=O(ε−1). When the method of multiple scales is applied, A0 and φ0 must
satisfy

dA0

dσ
=β1 (A0)= 1

2
A0

(
1− 1

4
A2

0

)
, A0(0)=1

and

dφ0

dσ
= α1 (A0)

A0
=0, φ0(0)=0.

This provides the unique limiting solution y0 =A0(σ ) cos	, where A0(σ )= 2/
√

1+3e−σ and
	 = η, since φ0(σ )= 0. Thus y0 uniformly approaches the periodic orbit 2 cosη as σ → ∞.
Indeed, a limit cycle exists for all positive values of ε and all nontrivial initial values, though
no exact formula for it is available, [25, Chapter 9].

At O(ε), the coefficient A1 must satisfy

d
dA0

(
A1(A0)

β1 (A0)

)
=0, A1(1)=0,

so A1(A0)≡0. Moreover, B1 must satisfy

d
dA0

(
B1(A0)

A0

)
= 1
β1 (A0)

(
ω0 − A(A0)

A0

)
, B1(1)=− 3

32
,

where A(A0)=− 1
8A0 + 3

16A
3
0 − 11

256A
5
0. Since A0 → 2 as σ →∞, B1 will remain nonsecular if

and only if we choose

ω0 =− 1
16
.

The asymptotic solution to O(ε) is then given by

y(t)=A0 cos	+ ε
[(

−11
64
A0 − 7

64
A3

0 + 1
8
A0 log(A0)

)
sin	− 1

32
A3

0 sin 3	
]

+O(ε2),

where

	=
(

1− 1
16
ε2 +O(ε3)

)
t.

The solution is asymptotically orbitally stable as t→∞, [25, Section 1.8], [26, Chapter 4].

3. Vector systems

In later sections, the starting point for the asymptotic methods presented is the system

ẋ= εF(x, t, ε), (3.1)

in periodic standard form, with x(0) given. Here, F is smooth and 2π -periodic in t , with a
power-series expansion in ε. Since the standard form (3.1) is central to what follows, we
briefly explore its properties.

Consider the weakly nonlinear vector system

ż=Mz+ εN(z, t, ε), (3.2)



312 B. Mudavanhu et al.

where the constant matrix M has purely imaginary, integral eigenvalues and a complete set
of eigenvectors. We also assume that N is 2π -periodic in t . The exponential matrix exp(Mt)
then has period 2π , so setting z= exp(Mt)x transforms (3.2) into (3.1), with the 2π -periodic
forcing

F(x, t, ε)≡ exp(−Mt)N (exp(Mt)x, t, ε) .

We note that [27] and [28] solve (3.2) by an invariance condition method, while [29] shows
that the Navier-Stokes equation for a slightly compressible fluid can be considered as an
abstract equation of this form. A more general standard form than (3.1) is needed, however,
to encounter the classic small-divisor problem [30, Chapter 5], [31, Chapters 2–3].

For the single weakly, nonlinear oscillator (1.1), one may easily obtain a system of the
form (3.2) by letting ẏ=x, so that ẋ=−y− εf (y, x). Then z = (

x
y

)
and M= (

0 −1
1 0

)
. A more

practical choice, however, is to introduce polar coordinates (ρ,φ) by letting y= ρ cos(t +φ)
and ẏ=−ρ sin(t +φ). In Sections 4 and 6 we will see how this choice leads to a much sim-
pler system for variation on the slow timescale. Specifically, the slow systems will always be
triangular, with the derivatives of the radius and phase depending only on the radius.

The regular perturbation process can be applied to initial-value problems for vector sys-
tems in the standard form (3.1). To obtain the regular perturbation series, set

xε(t)=x0(t)+ εx1(t)+ ε2x2(t)+· · · (3.3)

and use the analogous series for the derivative. We naturally expand F(x, t, ε) in its Maclaurin
expansion

F(x, t, ε)=F(x0, t,0)+ ε [(x1 ·�)F(x0, t,0)+Fε(x0, t,0)]+· · ·

and equate coefficients of like powers of ε in the differential system and initial value. We find
that the vector coefficients xj must, in turn, satisfy the linear systems

ẋ0 =0, x0(0)=x(0),

ẋ1 =F(x0, t,0), x1(0)=0,

ẋ2 = (x1 ·�)F(x0, t,0)+Fε(x0, t,0), x2(0)=0,

and so on. Upon integration, we uniquely obtain x0(t)=x(0),

x1(t)=
∫ t

0
F(x(0), s,0)ds,

and

x2(t)=
∫ t

0
[(x1(s) ·�)F(x(0), s,0)+Fε(x(0), s,0)] ds.

The procedure can be continued indefinitely and the resulting series will converge, like the so-
called matrizant, [32, p. 63], to the unique solution of the initial-value problem on any finite
t interval, for ε sufficiently small.

Naturally, resonance causes complications on long time intervals. Undetermined coeffi-
cients shows that any xj (t) will have polynomial blowup as t → ∞ whenever ẋj is a poly-
nomial in t . A more complete understanding can be achieved since the assumed periodicity
of F with respect to t allows us to employ Fourier series to show by induction that the term
xj (t) can generally grow like a polynomial in t of degree j . The constancy of x0, in particular,
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shows that x1(t)=a0 t+
∫ t

0 (F(x(0), s,0)−a0) ds will grow linearly in t if and only if the con-
stant term, a0, in the Fourier expansion of F(x(0), t,0) is nonzero. (The integral is bounded
since its integrand is periodic with a zero average.) Conditions guaranteeing the nonsecular
behavior of later terms follow analogously.

One way to achieve solutions of (3.1) on longer time intervals is to apply the multiple scale
ideas of Section 2. We therefore seek a generalized asymptotic expansion

xε(t, σ )=x0(t, σ )+ εx1(t, σ )+· · · , (3.4)

where σ = εt is a slow time. Here, it is not necessary to strain the fast time, t , to get an
asymptotic solution for t=O(ε−1). Since the chain rule implies that

ẋ= ∂x
∂t

+ ε ∂x
∂σ
,

we shall determine successive terms of the series (3.4) by equating coefficients of like powers
of ε in the resulting partial differential equation

∂x
∂t

= ε
(

F(x(t, σ, ε), t, ε)− ∂x
∂σ

)
. (3.5)

Thus, the first two equations

∂x0

∂t
=0,

∂x1

∂t
=F(x0, t,0)− ∂x0

∂σ

imply that the limiting solution

x0(t, σ )=A0(σ ) (3.6)

is independent of t , while its first correction x1 must satisfy

∂x1

∂t
=F(A0(σ ), t,0)− dA0

dσ
. (3.7)

Because F is a 2π -periodic function of t , ∂x1
∂t

must have a zero average with respect to t in
order for x1 to remain bounded as t → ∞. Thus, the limiting solution A0 must satisfy the
nonlinear initial value problem

dA0

dσ
= 1

2π

∫ 2π

0
F(A0(σ ), s,0)ds, A0(0)=x(0), (3.8)

a significant result which is traditionally obtained via the method of averaging. Due to the
guaranteed local existence of A0, we can integrate (3.7) using the trivial initial value to obtain

x1(t, σ )= 1
2π

∫ t

0

(∫ 2π

0
[F(A0(σ ), r,0)−F(A0(σ ), s,0)] ds

)
dr (3.9)

as a function of A0(σ ) and t . Later terms in the series (3.4) follow in a straightforward fash-
ion and the resulting approximation will be valid for t=O(ε−1).
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4. Averaging

The method of averaging was largely developed by Krylov and Bogoliubov in Kiev in the
1930’s, [5, Appendix 7], [33], [34, Chapter 11] and the Ukrainian school continues to produce
related asymptotics, [31, 35]. Morrison, [21], showed that, for the class of nonlinear oscilla-
tors (1.1) being considered, the methods of multiple scales and averaging produce the same
results on the O(ε−1) timescale (see also [36, 37]). Since the asymptotic validity of averaging
had been rigorously proven (see e.g. [33, Chapter 6]), this validated the efficacy of multi-
ple scales. As mentioned before, an independent proof of the asymptotic validity of multiple
scales was given later in [23]. This connection between averaging and multiple scales was his-
torically important for applied mathematicians because, although averaging had been rigor-
ously justified, it had been applied only to a relatively small class of problems. Multiple scales,
in contrast, had been applied to a much wider class of problems, including partial differential
equations, though it had not been proven to be correct. To this day, averaging is largely used
for systems of ordinary differential equations, although homogenization is a natural extension
of averaging for PDEs, [38].

The method of averaging is traditionally applied to vector systems in a standard form such
as (3.1). We shall first reduce the autonomous scalar equation (1.1) to this standard form by
making a change to polar coordinates. To this end we let

y=ρ cos(t+φ) and ẏ=−ρ sin(t+φ),
where ρ and φ vary with t . The consistency condition d

dt y= ẏ requires

ρ̇ cos(t+φ)−ρφ̇ sin(t+φ)=0.

Moreover, substituting in (1.1) requires

ρ̇ sin(t+φ)+ρφ̇ cos(t+φ)= εf (ρ cos(t+φ),−ρ sin(t+φ))
Solving this linear system for ρ̇ and ρφ̇, shows that the two-vector

x=
(
ρ

φ

)

satisfies a planar system of the form (3.1) with

F(x, t, ε)≡

⎛

⎜⎝
sin(t+φ)

1
ρ

cos(t+φ)

⎞

⎟⎠f (ρ cos(t+φ),−ρ sin(t+φ)).

As shown in Section 3, the leading-order solution of (3.1) is simply the initial value x(0).
This solution is valid for O(1) times, but is inappropriate for longer times. To achieve an
asymptotic solution valid on O(ε−1) timescales, we replace the constant x(0) with a vector

A(σ )=
(
R(σ)

�(σ)

)

that varies on the slow timescale σ =εt . At higher orders, there remains the potential for var-
iation on the fast scale, so we also add a correction term,

U(A, t, ε)=
⎛

⎝
V (A(σ ), t, ε)

W(A(σ ), t, ε)

⎞

⎠ ,
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to account for this. Thus, we shall employ the near-identity transformation

x=A+ εU(A, t, ε), (4.1)

selecting the terms of the power-series expansion

U(A, t, ε)∼U0(A, t)+ εU1(A, t)+· · ·
for the scaled correction U to be 2π periodic in t . We will thereby determine an appropri-
ate smooth power series M(A, ε) in ε so that the slowly varying vector A(σ ) will satisfy an
autonomous averaged system

Ȧ= εM(A, ε), A(0)=x(0). (4.2)

We can rewrite this as

dA
dσ

=M(A, ε)∼M0(A)+ εM1(A)+· · · , (4.3)

so averaging integrates away the fast time scale in (3.1). We do all this in the hope that find-
ing the asymptotic solution of (4.3) is a simpler challenge than integrating the original ini-
tial-value problem for large times. In particular, local existence of A on some σ > 0 interval
is guaranteed and a regular perturbation procedure with respect to ε might suffice as a first
attempt to obtain it asymptotically. Such near-identity transformations generalize a classical
asymptotic procedure of von Ziepel [18, Chapter 5], [30, Chapter 5] (see also [39], which val-
idates the procedure in terms of Gevrey asymptotics).

Applying the chain rule to the transformation (4.1) implies that

ẋ= ε
[(

I + ε ∂U
∂A

)
M(A, ε)+ ∂U

∂t

]
= εF(A+ εU, t, ε),

so the scaled correction U must satisfy the vector system

∂U
∂t

=F(A+ εU, t, ε)−
(

I + ε ∂U
∂A
(A, t, ε)

)
M(A, ε). (4.4)

Because we require U to be periodic in t , we must pick M to make ∂U
∂t

have a zero average.
Using the traditional notation (2.10), we may decompose any 2π -periodic function g(t) into
its average part, 〈g(t)〉, and its mean-free oscillatory remainder

{g(t)}≡ 1
2π

∫ 2π

0
(g(t)−g(s)) ds=g(t)−〈g(t)〉 . (4.5)

Thus,
〈
∂U
∂t

〉
=0 and the balance of average terms in (4.4) determines the previously unspecified,

t-independent forcing

dA
dσ

=M(A, ε)≡
(

I + ε
〈
∂U
∂A
(A, t, ε)

〉)−1

〈F(A+ εU, t, ε)〉 (4.6)

in (4.2). Having so balanced the average terms, we balance the remaining oscillatory terms
(4.4) through the equation

∂U
∂t

={F(A+ εU, t, ε)}− ε
{
∂U
∂A

}(
I + ε

〈
∂U
∂A

〉)−1

〈F(A+ εU, t, ε)〉 , (4.7)

which needs to be integrated to obtain the correction U.
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Progress now follows readily by simultaneously iterating termwise in (4.3) and (4.7). First,
expanding (4.6) for small ε, we find that the first two forcing terms of the averaged equation
(4.3) are

M0(A)=〈F(A, t,0)〉

and

M1(A)=〈(U0 ·�)F(A, t,0)+Fε(A, t,0)〉−
〈
∂U0

∂A

〉
〈F(A, t,0)〉 .

While M0 is completely specified, M1 depends on U0, so we must calculate U0 to determine
M1. To find U, we expand (4.7) for small ε and integrate. The first term immediately gives
the periodic function

U0(A, t)=
∫ t

0
{F(A, s,0)} ds. (4.8)

Thus the O(ε) solution to (3.1) is

x(t)=A(σ )+ εU0(A, t)+O(ε2), (4.9)

where the slowly varying function A(σ ) must still be determined by solving the approximate
averaged problem

dA
dσ

=M0(A)+ εM1(A)+O(ε2), A(0)=x(0). (4.10)

This procedure may easily be extended to higher orders in ε.
To solve the averaged problem (4.10), we try a regular power series

A(σ )=A0(σ )+ εA1(σ )+O(ε2). (4.11)

The leading term satisfies the nonlinear initial-value problem

dA0

dσ
=M0(A0), A0(0)=x(0),

while the second term will satisfy the linearized problem

dA1

dσ
= dM0

dA
(A0)A1 +M1(A0), A1(0)=0.

In particular, as with multiple scales, the term M0 for the oscillator (1.1) is given in terms of
the Fourier coefficients of f (y, ẏ), viz.

M0(A0)=〈F(A0, t,0)〉=

⎛

⎜⎝
β1(A0)

α1(A0)
A0

⎞

⎟⎠ . (4.12)

We now illustrate these procedures.
Recall the Duffing equation (1.7). The first-order system that results from the change to

polar coordinates is
⎛

⎝
ρ̇

φ̇

⎞

⎠= ε
⎛

⎝
1
4ρ

3 sin(2(t+φ))+ 1
8ρ

3 sin(4(t+φ))

3
8ρ

2 + 1
2ρ

2 cos(2(t+φ))+ 1
8ρ

2 cos(4(t+φ))

⎞

⎠ .
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Substituting the near-identity transformation (4.1) and averaging, provides

dR
dσ

=O(ε2) and
d�
dσ

= 3
8
R2 − ε 21

256
R2 +O(ε2),

along with the first correction term

U0(A, t)=
⎛

⎝
5

32R
2 − 1

8R
3 cos(2(t+�))− 1

32R
3 cos(4(t+�))

1
4R

2 sin(2(t+�))+ 1
32R

2 sin(4(t+�))

⎞

⎠ .

Using the initial values R(0)=1 and �(0)=0, we find

R(σ)=1+O(ε2σ) and �(σ)=
(

3
8

− 21
256

ε

)
σ +O(ε2σ).

Thus the solution in polar coordinates for bounded σ is

ρ=1+ ε
(

5
32

− 1
8

cos(2(t+�))− 1
32

cos(4(t+�))
)

+O(ε2),

φ=�+ ε
(

1
4

sin(2(t+�))+ 1
32

sin(4(t+�))
)

+O(ε2).

Inserting these results in y=ρ cos(t+φ) provides the solution in rectangular coordinates as

y(t)= cos(t+�)+ ε

32
(cos(3(t+�))− cos(t+�))+O(ε2),

where the phase satisfies

t+�=
(

1+ 3
8
ε− 21

256
ε2 +O(ε3)

)
t.

This approximation, valid for finite σ , exactly matches the one we determined using multiple
scales.

As a second example, take the damped linear oscillator (1.15). The first-order system in
polar coordinates is

⎛

⎝
ρ̇

φ̇

⎞

⎠= ε
⎛

⎝
−ρ+ρ cos(2(t+φ))

− sin(2(t+φ))

⎞

⎠ .

Substituting the near-identity transformation (4.1) and averaging, we obtain

dR
dσ

=−R+O(ε2) and
d�
dσ

=−1
2
ε+O(ε2).

We also find the first correction term

U0(A, t)=
⎛

⎝
1
2R sin(2(t+�))

1
2 (1− cos(2(t+�)))

⎞

⎠ .

Using R(0)=1 and �(0)=0, we find

R(σ)= e−σ +O(ε2σ) and �(σ)=−1
2
εσ +O(ε2σ).
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Thus the solution for bounded σ is

ρ=R+ ε

2
R sin(2(t+�))+O(ε2),

φ=�+ ε

2
(1− cos(2(t+�)))+O(ε2).

Inserting into y=ρ cos(t+φ), we obtain

y(t)= e−σ cos(t+�)+ εe−σ sin(t+�)+O(ε2),

where

t+�=
(

1− 1
2
ε2 +O(ε3)

)
t.

This approximation again exactly matches the one determined with multiple scales.
As a third example, consider the van der Pol equation (2.25). The first-order system in

polar coordinates is

⎛

⎝
ρ̇

φ̇

⎞

⎠= ε

⎛

⎜⎝
− 1

8ρ
2 + 1

2ρ− 1
2ρ cos(2(t+φ))+ 1

8ρ
3 cos(4(t+φ))

(
1
2 − 1

4ρ
2
)

sin(2(t+φ))− 1
8ρ

2 sin(4(t+φ))

⎞

⎟⎠ .

Using the near-identity transformation (4.1) and averaging, we determine

dR
dσ

= 1
2
R

(
1− 1

4
R2

)
+O(ε2),

d�
dσ

= ε
(

−1
8

+ 11
32
R2 − 21

256
R4

)
+O(ε2),

and the first correction term

U0(A, t)=

⎛

⎜⎝
− 1

4R sin(2(t+�))+ 1
32R

3 sin(4(t+�))

1
4 − 5

32R
2 − 1

4

(
1− 1

2R
2
)

cos(2(t+�))+ 1
32R

2 cos(4(t+�))

⎞

⎟⎠ .

We let

R(σ)=R0(σ )+ εR1(σ )+O(ε2) and �(σ)=�0(σ )+ ε�1(σ )+O(ε2),

for R0(0)=1 and R1(0)=�0(0)=�1(0)=0. The resulting leading-order amplitude is

R0(σ )= 2√
1+3e−σ ,

while R1(σ ) is trivial. Similarly, the leading-order phase is �0(σ )≡ 0. Thus, the solution for
bounded σ is

ρ=R0 + ε
(

−1
4
R0 sin (2 (t+ ε�1))+ 1

32
R3

0 sin (4 (t+ ε�1))

)
+O(ε2),

φ= ε
(
�1 + 1

4
− 5

32
R2

0 − 1
4

(
1− 1

2
R2

0

)
cos (2 (t+ ε�1))+ 1

32
R2

0 cos (4 (t+ ε�1))

)
+O(ε2).
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Now the amplitude, R0, tends to its asymptotically stable rest point R0(∞)=2, as σ→∞.
As a result, the forcing in the differential equation for �1 tends to a constant and the phase
will tend to a linear function of σ . We now split �1(σ ) into the sum of its unbounded part,
�̂1, and a bounded correction �̃1. Substituting R=R0(∞) in the equation for the phase, �̂1

must satisfy d�̂1
dσ =− 1

16 , �̂1(0)= 0, so the supplementary bounded part must satisfy d�̃1
dσ =

− 1
16 + 11

32R
2
0 − 21

256R
4
0, �̃1(0)=0. Simple integrations provide

�̂1(σ )=− 1
16
σ and �̃1(σ )= 21

64

(
R2

0 −1
)

− 1
8

log (R0) .

To construct the approximate solution in rectangular coordinates, we shall retain �̂1 in the
arguments of the trigonometric functions, while Taylor-expanding �̃1 outside. In this way, the
unbounded growth of the phase will not destroy the ordering of our generalized asymptotic
expansion. Using the expansions for ρ and φ in y=ρ cos(t +φ), the solution in rectangular
coordinates is

y(t)=R0 cos
(
t+ ε�̂1

)
+ ε

[
− 1

32
R3

0 sin
(

3
(
t+ ε�̂1

))

+
(

−11
64
R0 − 7

64
R3

0 + 1
8
R0 log (R0)

)
sin

(
t+ ε�̂1

)]
+O(ε2)

with

t+ ε�̂1 =
(

1− 1
16
ε2 +O(ε3)

)
t.

This exactly matches the result found using multiple scales.
As mentioned earlier, one attraction of the method of averaging is that it is proven to give

correct asymptotic approximations on (at least) O(ε−1) time intervals. We now provide an
outline for such a proof. Given a system in the standard form (3.1), suppose one determines
(through whatever means) an approximation,

xmε (t)=x0(t)+ εx1(t)+· · ·+ εmxm(t), (4.13)

to the solution x(t). This approximation will in general satisfy a differential equation

ẋmε = εF(xmε , t, ε)+ εm+2R(t), (4.14)

where the remainder term R(t) represents the error made by using (4.13) in place of the true
solution. One may then replace (3.1) and (4.14) with the equivalent integral equations and
subtract to find that

∣∣x(t)−xmε (t)
∣∣≤ ε

∫ t

0

∣∣F(x, s, ε)−F(xmε , s, ε)
∣∣ ds+ εm+2

∫ t

0
R(s)ds. (4.15)

A Gronwall-inequality estimate will then imply that

∣∣x(t)−xmε (t)
∣∣=O

(
εm+2teεt

)
,

so if 0≤ t ≤ L
ε

, where L is a constant independent of ε, we obtain

∣∣x(t)−xmε (t)
∣∣=O(εm+1).
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The technical difficulties in such a proof reside in the methodology for determining the
approximation, xmε (t), and the estimate of the remainder, R(t). Since the proof is indepen-
dent of the method of approximation, we can use it for any method that proceeds from the
standard form (3.1), including the methods of averaging and multiple scales, and even the
renormalization group method (to be discussed next). We refer readers interested in complete
proofs to [5,33] for averaging, to [23] for multiple scales and to [40] for the renormalization
group method.

5. Renormalization

Chen et al. [16], developed a renormalization group method as a unified tool for asymptotic
analysis. In particular, they sought to show that the renormalization-group approach was
more efficient and accurate than standard methods in extracting global information from the
perturbation expansion. Though experienced readers will naturally judge the efficacy of the
arguments for themselves, this paper is especially impressive due to the number and variety of
examples considered. Much follow-up has occurred, especially by theoretical physicists, includ-
ing the papers [41–43]. Connections between the renormalization group and normal forms are
made in [40], while many applications (including some for PDEs) have been made in refer-
ences [29, 44, 45].

For the weakly nonlinear oscillator, (1.1), the renormalization-group method of [16] pro-
ceeds in three distinct stages. First, one obtains the regular perturbation (or naive) expansion.
This naive expansion is parameterized by the initial amplitude and phase and will generally
include unbounded (secular) terms as t→∞. Next, one uses near-identity transformations to
replace the constant initial amplitude and phase by slowly varying functions satisfying the
initial conditions. The correction built into the near-identity transformation is then used to
remove secular terms from the naive expansion. The remaining secular-free (or bare) expan-
sion is then potentially valid on a long timescale. We then determine a pair of renormalized
equations for the amplitude and phase from the near-identity transformation by enforcing the
constancy of the initial amplitude and phase values. Lastly, we solve the renormalized ampli-
tude and phase equations asymptotically. This stage of the process ultimately determines the
timescale over which the approximations are valid. We observe more generally that renormal-
ization, somewhat like the neutrix calculus [46], involves “canceling divergences” [47]. We also
observe that averaging results in slowly varying coefficients, as does Whitham’s analysis for
dispersive waves [48, Part 2].

To generate the naive expansion, let

yε(t)=y0(t)+ εy1(t)+ ε2y2(t)+· · · (5.1)

be the regular perturbation solution of (1.1), using successive terms

y0(t)=Aε cos(t+ψε)

and

yj (t)=
∫ t

0
sin(t− s)gj−1(y0(s), . . . , ẏj−1(s))ds

for each j ≥ 1. We leave the amplitude Aε and the phase shift ψε as ε-dependent con-
stants in the leading coefficient y0(t,Aε,ψε) to emphasize the dependence of later coefficients
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yj (t,Aε,ψε) on two such constants of integration. The naive expansion will thus be deter-
mined as a generalized asymptotic expansion

yε(t,Aε,ψε)=y0(t,Aε,ψε)+ εy1(t,Aε,ψε)+· · · . (5.2)

Having determined the naive expansion, we use the near-identity transformations

Aε =A+ εU(A, t, ε), (5.3)

ψε =	+ εV (A, t, ε) (5.4)

to approximately replace the constants Aε and ψε with slowly varying functions A and 	.
The power-series expansions for the secular corrections U and V will be constructed term-
wise in ε to eliminate secular terms in the next coefficient of the resulting bare expansion

Y (t,A,	, ε)=yε(t,A+ εU,	+ εV )=Y0(t,A,	)+ εY1(t,A,	)+· · · . (5.5)

More generally, the secular corrections U and V in (5.3) and (5.4) would depend on 	 as
well, but for the restricted class of oscillators (1.1), experience suggests that dependence on
only the amplitude A is an allowable simplification.

Since

y0(t,Aε,ψε)=Aε cos(t+ψε)≡ ỹ0(t,Aε,ψε)

is secular-free, the leading term of the bare expansion is

Y0(t,A,	)=A cos(t+	). (5.6)

Moreover, since Y1 denotes the coefficient of ε in (5.5),

Y1(t,A,	)=y1(t,A,	)+ ∂y0

∂Aε
(t,A,	)U0(A, t)+ ∂y0

∂ψε
(t,A,	)V0(A, t).

Recall, however, that when we expose the secular terms of y1, we get

y1(t,Aε,ψε)= [β1(Aε) cos(t+ψε)−α1(Aε) sin(t+ψε)] t+ ỹ1(t,Aε,ψε)

where

ỹ1(t,Aε,ψε)≡−
∫ t

0
sin(t− s)f̃ (Aε cos(s+ψε),−Aε sin(s+ψε))ds

is secular-free since the first harmonics of f were split-off to define f̃ . Thus, the second term

Y1(t,A,	)≡ ỹ1(t,A,	) (5.7)

of the bare expansion (5.5) becomes secular-free when we select the first correction terms

U0(t,A)=−β1(A) t and V0(t,A)=−α1(A)

A
t

from (5.3), (5.4) to precisely cancel the coefficients of cos(t+	) and sin(t+	) in Y1.
Analogously, we select U1 and V1 to cancel secular terms in y2 to leave a secular-free Y2 at

O(ε2). Because the term y2 of the naive expansion is generally a quadratic in t , it is natural
to expect the corresponding correction terms U1 and V1 in (5.3), (5.4) to also be quadratic. In
general, yn will have secular terms containing powers of at most tn, so we expect Un−1 and
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Vn−1 to also be polynomials in t of degree n. Continuing to choose the terms of the near-
identity transformations to cancel secular terms, what results is an asymptotic expansion

Y (t,A,	)= ỹ0(t,A,	)+ εỹ1(t,A,	)+ ε2ỹ2(t,A,	)+· · · , (5.8)

determined by the nonsecular part ỹ(t,A,	, ε) of the naive expansion yε(t,Aε,ψε), where the
constants Aε and ψε are replaced by slowly varying functions A and 	, [49].

Since Aε and ψε are constants, their time derivatives are zero. Enforcing these conditions
provides a pair of evolution equations for the slowly-varying functions A and 	. Specifically,
since dAε

dt =0, the chain rule provides the evolution equation

dA
dσ

=−
(

1+ ε ∂U
∂A

)−1
∂U

∂t
≡h(A, ε) (5.9)

for the amplitude A, where we can expand

h(A, ε)≡h0(A)+ εh1(A)+ ε2h2(A)+· · ·
as an autonomous forcing function. Similarly, dψε

dt =0 implies the evolution equation

d	
dσ

=−∂V
∂t

− ε ∂V
∂A

h(A, ε)≡k(A, ε) (5.10)

for the slowly varying phase. Again, the forcing

k(A, ε)≡k0(A)+ εk1(A)+ ε2k2(A)+· · ·
is autonomous. Equations (5.9) and (5.10) are, respectively, the renormalized amplitude and
phase equations. These evolution equations are determined as asymptotic series, since we gen-
erally solve for U and V termwise. We likewise determine initial conditions for A and 	 by
asymptotically solving the equations

Y (0,A(0, ε),	(0, ε))=1 and Ẏ (0,A(0, ε),	(0, ε))=0

for the successive coefficients in

A(0, ε)=a0 + εa1 + ε2a2 +· · · and 	(0, ε)=b0 + εb1 + ε2b2 +· · · .
Not surprisingly, the limiting renormalized amplitude and phase equations coincide with the
limiting equations previously found via multiple scales and averaging. In particular, in terms
of the first-harmonic Fourier coefficients of f (y0, ẏ0), h0(A)= β1(A) and k0(A)= α1(A)

A
. The

desired asymptotic solution of (1.1) follows from the bare expansion, (5.5), using asymptotic
solutions, A and 	, of (5.9) and (5.10) wherever they are defined.

Since the initial-value problem for

dA
dσ

=h(A, ε), (5.11)

is decoupled from that for the phase, we first seek its solution as a regular power series

Aε(σ )=A0(σ )+ εA1(σ )+· · · (5.12)

in ε. The solution of the limiting renormalized equation

dA0

dσ
=β1(A0), A0(0)=a0
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is defined at least up to some finite σ . The correction term A1(σ ) satisfies the linearized prob-
lem

dA1

dσ
= dβ1

dA
(A0)A1 −h1(A0), A1(0)=a1.

Since the Jacobian ∂A0
∂a0

satisfies dJ
dσ = dβ1

dA (A0) J , we immediately determine

A1(σ )= ∂A0(σ )

∂a0

([
∂A0

∂a0
(0)

]−1

a1 −
∫ σ

0

[
∂A0

∂a0
(r)

]−1

h1(r)dr

)
, (5.13)

as long as A0(σ ) remains defined. Later terms follow uniquely in succession. If A0 decays to
an asymptotically stable rest point, all terms of the series (5.12) will also decay exponentially
and the renormalized solution for the amplitude A will be valid asymptotically for all t ≥ 0.
Due to the triangular structure of the renormalized system, (5.10) immediately implies that

	(σ, ε)=	(0, ε)+
∫ σ

0
k(A(r), ε)dr. (5.14)

In many cases, the solution for 	 will contain terms that grow as σ→∞. Though these terms
will not destabilize the amplitude, they can shift the phase on the O(ε−1) timescale, thus lim-
iting the uniform validity of the renormalization group solution to such times. We will now
consider several examples.

First, let us return to the Duffing equation, (1.7). Renormalizing provides the bare approx-
imation

Y (t,A,	, ε)=A cos (t+	)+ εA
3

32
cos (3 (t+	))+O(ε2),

and the evolution equations

dA
dσ

=O(ε2) and
d	
dσ

= 3
8
A2 − ε 15

256
A4 +O(ε2),

for the amplitude and phase. To find initial conditions, we must asymptotically solve the sys-
tem

A(0, ε) cos(	(0, ε))+ εA
3(0, ε)
32

cos(3	(0, ε))+O(ε2)=1,

A(0, ε) sin(	(0, ε))+ ε 3A3(0, ε)
8

(
sin(	(0, ε))+ 1

4
sin(3	(0, ε))

)
+O(ε2)=0.

This determines A(0, ε)=1− ε
32 +O(ε2) and 	(0, ε)=O(ε2), so A(σ)=1− ε

32 +O(ε2)O(ε2σ)

and 	(σ)=
(

3
8 − ε 21

256

)
σ +O(ε2)O(ε2σ). Thus,

y(t)= cos(t+	)+ ε

32
(cos(3(t+	))− cos(t+	))+O(ε2),

for the phase

t+	=
(

1+ 3
8
ε− 21

256
ε2 +O(ε3)

)
t.

This expansion agrees exactly with the previous results from multiple scales and averaging.
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Now reconsider the weakly damped linear oscillator (1.15). Renormalization provides the
bare approximation

Y (t,A,	, ε)=A cos(t+	)+O(ε2),

and the renormalized equations

dA
dσ

=−A+O(ε2) and
d	
dσ

=−1
2
ε+O(ε2).

To find initial conditions, we asymptotically solve

A(0, ε) cos(	(0, ε))+O(ε2)=1,

−A(0, ε) sin(	(0, ε))− εA(0, ε) cos(	(0, ε))+O(ε2)=0

to obtain A(0, ε)=1+O(ε2) and 	(0, ε)=−ε+O(ε2). Thus, A(σ)=e−σ +O(ε2)O(ε2σ). The
leading-order phase is identically zero, but since A decays to the trivial asymptotically sta-
ble rest point, we will use the splitting technique (as we did for the van der Pol equation) to
determine the next term 	1. When we used averaging, we did no splitting because both the
initial values and the rest point were trivial. Now, however, the nontrivial initial value gener-
ates a nonzero bounded contribution to 	1. As before, let 	̂1 be the linear, unbounded part
and 	̃1 the bounded part of 	1. Such a splitting implies the two supplementary initial-value
problems

d	̂1

dσ
=−1

2
, 	̂1(0)=0 and

d	̃1

dσ
=0, 	̃1(0)=−1,

with solutions 	̂1(σ )=− 1
2σ and 	̃1(σ )=−1. Thus the asymptotic solution is

y(t)= e−σ cos(t+ 	̂1)− εe−σ sin(t+ 	̂1)+O(ε2),

for the phase

t+ 	̂1 =
(

1− 1
2
ε2 +O(ε3)

)
t,

in exact agreement with the multiple scales and averaging results.
As a third example, let us return to the van der Pol equation (2.25). Renormalization pro-

vides the bare approximation

Y (t,A,	, ε)=A cos(t+	)+ εA
3

32
sin(3(t+	))+O(ε2)

and the renormalized equations

dA
dσ

= 1
2
A

(
1− 1

4
A2

)
+O(ε2),

d	
dσ

= ε
(

−1
8

+ 1
8
A2 − 7

256
A4

)
+O(ε2)
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for the amplitude and phase. To find initial conditions, we must asymptotically solve

A(0, ε) cos(	(0, ε))− εA
3(0, ε)
32

sin(	(0, ε))+O(ε2)=1,

−A(0, ε) sin(	(0, ε))+ ε
(

−3A3(0, ε)
32

cos(3	(0, ε))

+A(0, ε)
2

(
1− A2(0, ε)

4

)
cos(	(0, ε))

)
+O(ε2)=0

to obtain A(0, ε)=1+O(ε2) and 	(0, ε)= 9
32ε+O(ε2). We find

A(σ)=A0(σ )+O(ε2)O(ε2σ)≡ 2√
1+3e−σ +O(ε2)+O(ε2σ).

The leading-order amplitude, A0, has the asymptotically stable rest point A0(∞) = 2. As
usual, the leading-order contribution of the phase is 	0(σ )≡ 0, but because we have both a
nontrivial rest point for the amplitude and a nonzero initial phase, we split 	1 into bounded
and unbounded parts. This splitting results in

d	̂1

dσ
=− 1

16
, 	̂1(0)=0

and

d	̃1

dσ
=− 1

16
+ 1

8
A2

0 − 7
256

A4
0, 	̃1(0)= 9

32
,

with solutions 	̂1(σ )=− 1
16σ and 	̃1 = 11

64 + 7
64A

2
0 − 1

8 log (A0). The resulting solution,

y(t)=A0 cos
(
t+ ε	̂1

)
+ ε

[
− 1

32
A3

0 sin
(

3
(
t+ ε	̂1

))

+
(

−11
64
A0 − 7

64
A3

0 + 1
8
A0 log (A0)

)
sin

(
t+ ε	̂1

)]
+O(ε2)

for the phase

t+ ε	̂1 =
(

1− 1
16
ε2 +O(ε3)

)
t,

coincides exactly with the results found previously.

6. Amplitude equations

As we have found, the asymptotic solution of the vector system

ẋ= εF(x, t, ε), (3.1)

on an appropriate t=O(ε−1) interval can be obtained using averaging, multiple scales, or re-
normalization. Recall the regular perturbation (naive) expansion

xε(t)=x0(t)+ εx1(t)+ ε2x2(t)+· · · . (3.3)

The constant leading term x0(t)=x(0) is secular-free, but its first correction

x1(t)=
∫ t

0
F(x(0), s,0)ds=〈F(x(0), t,0)〉 t+

∫ t

0
{F(x(0), s,0)}ds (6.1)
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is naturally split into its secular and bounded parts. The same is true for higher-order terms.
By deleting all secular terms generated, we can immediately define the bare (or secular-free)
expansion

xε(t)=x(0)+ ε
∫ t

0
{F(x(0), s,0)}ds+O(ε2)

to any order. This sum, for a constant vector x(0), does not solve (3.1), however. When we
instead replace x(0) by an appropriate slowly-varying amplitude A(σ ), the approximation

xε(t)=A(σ )+ ε
∫ t

0
{F(A(σ ), s,0)}ds+· · · , (6.2)

may be successful.
To derive the amplitude equations for the weakly nonlinear oscillator (1.1), we introduce

polar coordinates to transform the oscillator equation into the standard form (3.1). We also
introduce a strained fast time to eliminate the necessity of splitting the resulting amplitude
equation for the phase when there is a nontrivial rest point. To this end, let

y=ρ cos (η+φ) and ẏ=−ρ sin (η+φ) , (6.3)

where

η= (1+ εω(ε)) t,

for ω(ε)=ω0 +ω1ε+· · · , is a strained fast time and ρ and φ are new time-varying polar coor-
dinates. In contrast with multiple scales, as formulated in Section 2, we begin the straining of
the fast time at O(ε), rather than O(ε2). This choice is deliberate and ultimately allows us to
choose the rest point of the phase equation to be zero, thus shifting the slow dynamics to the
radius and significantly simplifying the resulting calculations. As with averaging, x= ( ρ

φ

)
. By

the chain rule, the transformed system then becomes

dx
dt

= εF(x, η, ε), (6.4)

with a prescribed initial vector, x(0) and the forcing

F(x, η, ε)=

⎛

⎜⎝
sin(η+φ)f (ρ cos(η+φ),−ρ sin(η+φ))

1
ρ

cos(η+φ)f (ρ cos(η+φ),−ρ sin(η+φ))−ω(ε)

⎞

⎟⎠ .

This suggests that we seek a solution by introducing the near-identity transformation

x(t)=A(σ )+ εU(A(σ ), η, ε) (6.5)

for an amplitude A varying with the slow-time σ = εt . We require the scaled correction U to
be analytic in A, 2π -periodic in η and to possess an asymptotic series in ε. We also ask that
A(0)=x(0) so that U(A(0),0, ε)=0. We shall also require an amplitude equation

dA
dσ

=H(A, ε), (6.6)

to be satisfied, for a yet to be determined autonomous function H.
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Recall that the leading term x0 in the two-time expansion only depends on σ , while its
first correction x1 depends on σ through the leading amplitude A0. Such an ansatz is also
central to averaging. Moreover, it allows one to renormalize, bypassing both the identifica-
tion of the secular terms of the naive expansion and their subsequent removal [49]. Such an
ansatz is also made in Lighthill’s method [50]. This ansatz is sometimes called the amplitude
equation technique [51–53]. In the applied literature (including stability and bifurcation the-
ory and pattern formation), such multiscale methods are typically used quite informally, but
often effectively: for example Pedlosky obtains the amplitude equations for a resonant triad
solution of Charney’s barotropic equations of atmospheric dynamics [54] and Fujimura relates
the multiple scale method and the Landau equation in the context of stability theory for fluid
mechanics [55–57]. In these various contexts, the amplitude-equation approach is more gen-
eral than averaging, though the methods coincide for the oscillator (1.1). Analogous transfor-
mations are central to the related method of normal forms, [58–60].

As with multiple scales, we will treat the two timescales σ and η independently. Substitut-
ing the ansatz (6.5) in the system (6.4) and applying the chain rule then implies the partial
differential equation

dA
dσ

+ ε ∂U
∂A

dA
dσ

+ (1+ εω(ε)) ∂U
∂η

=F (A+ εU, η, ε) . (6.7)

Substituting (6.6) in (6.7) and taking the average over 0≤η≤2π we obtain the integral equa-
tion

H (A, ε)= 1
2π

∫ 2π

0

(
F(A+ εU, s, ε)− ε ∂U

∂A
H(A, ε)

)
ds, (6.8)

since dA
dσ is independent of η, while boundedness of U requires ∂U

∂η
to be periodic with a zero

average. Alternatively,

H (A, ε)=
(

I + ε
〈
∂U
∂A

〉)−1

〈F (A+ εU, η, ε)〉 ,

which is analogous to (4.6) and (5.9). This identifies the resonant terms which, when inte-
grated, cause secular behavior. By isolating such resonant terms, we can deal with them sep-
arately from the harmless, oscillatory remainder in (6.7).

Next, we solve (6.7) for ∂U
∂η

, insert (6.6) and integrate from 0 to η to obtain a second inte-
gral equation,

(1+ εω(ε))U (A, η, ε)=
∫ η

0

(
F (A+ εU, s, ε)−

(
I + ε ∂U

∂A

)
H (A, ε)

)
ds, (6.9)

which represents the bounded, oscillatory correction U in (6.5), since H is the average of the
periodic function F − ε ∂U

∂A H. We shall iterate in this coupled pair of integral equations to
define H and U asymptotically.

Assuming the series expansions

H (A, ε)=H0(A)+ εH1(A)+ ε2H2(A)+· · · (6.10)

and

U (A, η, ε)=U0 (A, η)+ εU1 (A, η)+ ε2U2 (A, η)+· · · , (6.11)

we have that F has the resulting Taylor-series expansion

F (A+ εU, η, ε)=F0 (A, η)+ εF1 (A,U0, η)+ ε2F2 (A,U0,U1, η)+· · · . (6.12)
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Then substituting the power series (6.10–6.12) in the integral equations (6.8) and (6.9), aver-
aging and collecting terms with like powers of ε, one finds to leading order that

H0 (A)= 1
2π

∫ 2π

0
F0 (A, s) ds=〈F0 (A, η)〉 (6.13)

and

U0 (A, η)=
∫ η

0
(F0 (A, s)−H0 (A)) ds, (6.14)

as found by the method of averaging (recall (4.12); see also [5, 33, 61]). At O(εn), for each
n≥1, we determine the convenient corresponding pair of recursion relations

Hn (A)=
〈Fn

(
A,U0, . . . ,Un−1, η

)〉−
n−1∑

k=0

〈
∂Uk

∂A

〉
Hn−k−1 (A) (6.15)

and

Un (A, η)=
∫ η

0

[
Fn

(
A,U0, . . . ,Un−1, s

)−Hn (A)

−
n−1∑

k=0

(
∂Uk

∂A
Hn−k−1 (A)

)]
ds−

n−1∑

k=0

Uk ωn−k−1. (6.16)

These relations asymptotically determine both the bounded, higher-order approximations to
the solution (6.5) and the higher-order terms in the amplitude equation (6.6). To completely
succeed, all that remains is to solve the nonlinear initial-value problem

dA
dσ

=H (A, ε) , A(0)=x(0). (6.17)

To asymptotically solve (6.17), we insert a regular perturbation series

A(σ )=A0(σ )+ εA1(σ )+ ε2A2(σ )+· · · . (6.18)

The limiting problem,

dA0

dσ
=H0 (A0) , A0(0)=x(0), (6.19)

is generally fully nonlinear. Wherever it can be solved, later terms Ak, for k≥ 1, follow suc-
cessively as solutions of a sequence of linearized problems

dAk
dσ

= ∂H0

∂A
(A0)Ak +αk

(
A0,A1, . . . ,Ak−1

)
, Ak(0)=0, (6.20)

where αk
(
A0,A1, . . . ,Ak−1

)
is known from inserting the regular perturbation series (6.18) into

(6.17) and Taylor expanding H for small ε. Using the fundamental matrix ∂A
∂x(0) ,

Ak(σ )= ∂A0(σ )

∂x(0)

∫ σ

0

[(
∂A0(r)

∂x(0)

)−1

αk
(
A0(r),A1(r), . . . ,Ak−1(r)

)
]

dr (6.21)

is defined whenever A0(σ ) is. Its behavior as σ → ∞ follows according to various stability
hypotheses on A0. By comparison with the related work of [39, 62, 63], we should expect the
series for H and U to diverge as Gevrey series.
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As a specific example, reconsider the van der Pol equation (2.25). Once we use the trans-
formations (6.3) to rewrite the equation as a first-order system in standard form, we apply
the recursion formulas to find the amplitude equations

dR
dσ

= 1
2
R

(
1− 1

4
R2

)
+ ε2

(
− 5

128
R3 + 17

768
R5 − 37

12288
R7

)

+ε4
(

81
2048

R3 − 2899
55296

R5 + 167197
7077888

R7 − 105841
23592960

R9 + 29177
94371840

R11
)

+O(ε5),

d�
dσ

=−ω0 − ε
(
ω1 + 1

8
− 11

32
R2 + 21

256
R4

)
− ε2ω2 − ε3

(
ω3 + 1

128
− 59

512
R2

+ 5897
36864

R4 − 18241
294912

R6 + 5633
786432

R8
)

− ε4ω4 +O(ε5).

The leading terms agree exactly with the averaged equations derived earlier, except for the
presence of the ωj ’s in the phase. Here we have written the O(ε4) amplitude equations, but
note that the recursion formulas and a computer-algebra system (such as MAPLE) make it
quite straightforward to derive any desired number of terms. Regular perturbation series for
R(σ) and �(σ) imply the same O(ε) solution derived in the averaging section, including iden-
tical phase shifts ω0 = 0 and ω1 =− 1

16 , chosen so that the O(ε) term in the phase equation
decays to zero as σ →∞. One may easily use these amplitude equations to calculate higher-
order approximations to the solution of the van der Pol equation.

We may also use the amplitude equations to verify the limit-cycle solution found by the
Poincaré-Lindstedt procedure. Recall that in this procedure one assumes both an initial value
y(0)=a0 + εa1 + ε2a2 +· · · on the limit cycle and a strained coordinate η= (1+ ε�0 + ε2�1 +
· · · ) t to account for the ε-dependent period of the phase plane orbit. One then chooses the
constants ak and �k to eliminate secular terms from the regular perturbation expansion. The
result is an approximation of the periodic solution that is uniformly valid on a t = O(ε−1)

interval to the specified order of error. To O(ε3), this periodic solution for the van der Pol
equation is

y(t)=2 cosη+ ε
(

3
4

sinη− 1
4

sin 3η
)

− ε2
(

1
8

cosη− 3
16

cos 3η+ 5
96

cos 5η
)

−ε3
(

7
256

sinη− 21
256

sin 3η+ 35
576

sin 5η− 7
576

sin 7η
)

+O(ε4), (6.22)

where the initial value is

y(0)=2+ 1
96
ε2 +O(ε4)

(together with ẏ(0)=0) and the strained coordinate is

η=
(

1− 1
16
ε2 + 17

3072
ε4 +O(ε5)

)
t. (6.23)

The attracting nature of the limit cycle implies that any nontrivial solution will be captured
as t→∞. Thus, we can expect the asymptotically stable rest point of the amplitude equation
for the radius R(σ) to coincide with the initial value determined with the Poincaré-Lindstedt
procedure. Hence, we substitute

R(σ)=R(∞)≡R0(∞)+ ε2R2(∞)+O(ε4)
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in the amplitude equations. Since the derivatives dR
dσ and d�

dσ become zero at the rest point, we
find R(∞)=2+ 1

96ε
2 +O(ε4), as expected, as well as the strained coordinate (6.23). Substitut-

ing this radius in the secular-free expansion, we determine exactly the limit-cycle approxima-
tion (6.22). Using the O(ε10) amplitude equations instead, we may further determine

R(∞)=2+ 1
96
ε2 − 1033

552960
ε4 + 1019689

55738368000
ε6 + 9835512276689

157315969843200000
ε8

+ 58533181813182818069
7326141789209886720000000

ε10 +O(ε11) (6.24)

and the improved strained coordinate

η=
(

1− 1
16
ε2+ 17

3072
ε4+ 35

884736
ε6− 678899

5096079360
ε8+ 28160413

2293235712000
ε10+O(ε12)

)
t. (6.25)

Using (6.24) and (6.25) in the secular-free expansion calculated with the O(ε10) amplitude
equations, gives a limit-cycle solution with an error of O(ε11) on the O(ε−1) timescale. As
independent confirmation, we note that the frequency of the van der Pol oscillator was cal-
culated to very high orders in [64].

When we have a periodic solution, we can use the amplitude equations to provide a solu-
tion on a time interval much longer than the usual t=O(ε−1). Specifically, the rest points of
the amplitude equations then provide the radius of the limit cycle and frequency of the oscil-
lator. Suppose we have an O(εn) approximation

y(t; ε)=y0(η, σ )+ εy1(η, σ )+· · ·+ εnyn(η, σ )+O(εn+1),

with a purported O(εn+1) error, assuming η is completely determined. In practice, however,
we only know the frequency to O(εk), for some k>n. We may then approximate

η=
(

1+ εω0 + ε2ω1 +· · ·+ εkωk−1 +O(εk+1)
)
t≡ηkε +O(εk+1t),

so that

y(t; ε)=y0(η
k
ε , σ )+ εy1(η

k
ε , σ )+· · ·+ εnyn(ηkε , σ )+O(εn+1)+O(εk+1t), (6.26)

since the yj ’s and their derivatives are all uniformly bounded when y(t; ε) is periodic. For k=
n+ 1, we have the usual O(ε−1) time interval of validity; i.e., we must calculate the strained
coordinate to one higher order in ε than our proposed approximation in order to maintain
the same level of error. For the van der Pol results derived above, we may have an error
of O(ε11) on the O(ε−1) timescale, as previously noted, or we could use the O(ε3) approxi-
mation, (6.22), and the O(ε11) strained coordinate, (6.25), to achieve an O(ε4) error on the
O(ε−8) timescale. This “trade-off” principle for (6.26) was noted by Murdock in [4], but was
likely known informally long before. Rubenfeld, [65], developed a method with a similar, but
more limited, trade-off principle.

Using a regular perturbation series in the amplitude equations does not always give the
correct result. This procedure is vulnerable when the weakly nonlinear forcing of (1.1) also
depends on ε, i.e., when the forcing is f (y, ẏ, ε). Morrison, [21], introduced the problem

ÿ+y+ εẏ3 +3ε2ẏ=0, (6.27)

to show how the method of multiple scales is similarly vulnerable. Fortunately, the ampli-
tude equation method allows us to overcome these difficulties by simply modifying the proce-
dure used to solve the amplitude equations. If a regular perturbation series is unsatisfactory,



Working with multiscale asymptotics 331

e.g. if Aj (σ ) blows up for some j ≥ 1, one may instead attempt to simply rescale the ampli-
tude equations (cf. [18, Section 4.2.4], where an entirely new multiple scale expansion must be
derived). Once a consistent rescaling has been found, the problem for the rescaled amplitude
equations may then be solved using a regular perturbation series, as before.

For (6.27), we obtain the amplitude equations

dR
dσ

=−3
8
R3 − ε 3

2
R− ε2 45

4096
R7 − ε3 9

256
R5 + ε4

(
81

128
R3 + 267651

10485760
R11

)
+O(ε5),

d�
dσ

=−ω0 − ε
(
ω1 + 45

256
R4

)
− ε2

(
ω2 + 27

32
R2

)
− ε3

(
ω3 + 9

8
− 6021

262144
R8

)

−ε4
(
ω4 − 3735

32768
R6

)
+O(ε5).

A regular perturbation solution of these equations gives the leading amplitude

R0(σ )= 2√
3σ +4

,

in agreement with multiple scales. Unfortunately, this algebraically decaying amplitude under-
estimates the decay to the rest point. Worse, the O(ε) correction R1(σ ) blows up like

√
σ as

σ → ∞, as do the multiple scales results. Figure 1 shows the multiple scale approximation
plotted together with a numerical solution of (6.27). The deficient decay rate is evident. We
may attempt to salvage our amplitude equations by introducing a rescaling transformation

Z= εαR, κ= εβσ,

in an attempt to find a more appropriate timescale over which the decay occurs. Using the
transformations in the amplitude equations and applying dominant balance arguments implies
that the only new consistent balance is α=− 1

2 and β=1. Defining 	(κ)=� (
κ
ε

)
, we find the

rescaled amplitude equations

dZ
dκ

=−3
8
Z3 − 3

2
Z+ ε4

(
81
128

Z3 − 9
256

Z5 − 45
4096

Z7
)

+O(ε8),
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Figure 1. The numeric solution of Morrison’s equa-
tion and the multiple-scales approximation. Note
how the multiple-scales solution fails to decay
quickly enough to the rest point at zero.
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Figure 2. The numeric solution of Morrison’s equa-
tion and the rescaled amplitude equation approxima-
tion are indistinguishable from each other.
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d	
dκ

=−ω0

ε
−ω1 − εω2 + ε2

(
ω3 + 9

8
+ 27

32
Z2 + 45

256
Z4

)
− ε3ω4 − ε4ω5 +O(ε5).

We now solve the rescaled amplitude equations using the regular perturbation series

Z(κ)=Z0(κ)+ ε4Z1(κ)+O(ε8).

The leading-order problem is the Bernoulli equation

dZ0

dκ
=−3

8
Z3

0 − 3
2
Z0, Z0(0)= 1√

ε
,

whose solution

Z0(κ)= 2√
(1+4ε) e3κ −1

,

decays exponentially to the trivial rest point as κ→∞. Further, to eliminate linearly growing
terms in the phase, we must set ω0 =ω1 =ω2 =ω4 =ω5 =0 and ω3 =− 9

8 . An integration then
implies that

	(κ)= ε2
(

15
64

(
Z2

0 −1
)

+ 3
16

log
(

1
5

(
Z2

0 +4
)))

+O
(
ε6κ

)
.

Thus we may write the final approximation as

y(t)=√
εZ0

(
cosη+ε2

[(
33
64
Z2

0+81
64

+ 3
16

log
(

1
5

(
Z2

0+4
)))

sinη+ 1
32
Z3

0 sin 3η
]

+O(ε4)

)
.

Note that the expansion is not singular at κ=0 as ε→0 since
√
εZ0 is bounded. This modi-

fied amplitude equation solution is plotted with the numerical solution in Figure 2. Owing to
the asymptotic stability of the rest point, the approximation is valid for all t ≥0. Analogous
results follow for the van der Pol-Duffing equation

ÿ+y+ εy3 + ε2(y2 −1)ẏ=0, (6.28)

a stochastic version of which is considered in [66]. The interested reader may find a more
complete discussion of rescaling for systems of ordinary differential equations in [67].

We note that our approach, based on the elimination of resonant terms, is analogous to
the use of various initialization methods to account for boundary layers [68–70]. Thus, we
can expect the amplitude equation method to encompass such problems as well. Many more
fascinating oscillator-type examples may be found in the texts [26, 71–72].

7. Concluding remarks

In this paper, we have studied a variety of techniques for approximating solutions to the
weakly nonlinear oscillator (1.1). Each was demonstrated on a common set of nontriv-
ial examples and the different approximation methods were shown to give identical results.
Though each approach considered has advantages, we believe the amplitude-equation method
ultimately provides the greatest flexibility.

A major benefit of the amplitude equation technique is the ease with which it can be auto-
mated by a computer-algebra system. The recursion formulas we derived make such automa-
tion exceptionally easy. Once a working code has been produced and tested (as the authors
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have done with MAPLE), the computational work to derive the amplitude equations for any
specific weakly nonlinear oscillator is essentially trivial except for the computer processor time
involved.

A second major benefit of the amplitude-equation technique is that the ε-dependent fre-
quency may be quite easily derived directly from the amplitude equations. In the case of peri-
odic solutions, one may use this frequency to define an asymptotic approximation that is
valid for much longer time intervals than is customary with either multiple scales or averag-
ing. Although one derives a strained coordinate using multiple scales, new terms of the fre-
quency expansion are found one at a time, so the convenience of knowing the frequency to
high orders is lost. Likewise, it is not customary to obtain a strained coordinate with averag-
ing, so those results are more limited. Our results clearly represent an advance over these two
methods.

An important application of these methods is to provide or validate related algorithms to
obtain numerical solutions to initial-value problems over long time intervals. The state of the
art for these efforts is described in [73].
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50. H.S. Tsien, The Poincaré-Lighthill-Kuo method. In: Advances in Applied Mechanics, Vol. IV, New York: Aca-

demic Press (1956) pp. 281–349.
51. P.H. Coullet and E.A. Spiegel, Amplitude equations for systems with competing instabilities. SIAM J. Appl.

Math. 43 (1983) 776–821.
52. W. Eckhaus, On modulation equations of the Ginzburg-Landau type. In: R.E. O’Malley, Jr. (ed.), ICIAM

91 (Washington, DC, 1991), Philadelphia: SIAM (1992) pp. 83–98.
53. C.J. Budd, G.W. Hunt and R. Kuske, Asymptotics of cellular buckling close to the Maxwell load. R. Soc.

London Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001) 2935–2964.
54. J. Pedlosky, Geophysical Fluid Dynamics. New York: Springer-Verlag (1987) xiv + 710 pp.
55. K. Fujimura, The equivalence between two perturbation methods in weakly nonlinear stability theory for

parallel shear flows. Proc. R. Soc. London A 424 (1989) 373–392.
56. K. Fujimura, Methods of centre manifold and multiple scales in the theory of weakly nonlinear stability for

fluid motions. Proc. R. Soc. London A 434 (1991) 719–733.
57. K. Fujimura, Centre manifold reduction and the Stuart-Landau equation for fluid motions. Proc. R. Soc.

London A 453 (1997) 181–203.
58. A.H. Nayfeh, Method of Normal Forms. New York: John Wiley & Sons Inc. (1993) xii + 218 pp.
59. S.M. Cox and A.J. Roberts, Initial conditions for models of dynamical systems. Phys. D 85 (1995) 126–141.
60. J. Murdock, Normal Forms and Unfoldings for Local Dynamical Systems. Springer Monographs in Mathe-

matics, New York: Springer-Verlag (2003) xx + 494 pp.
61. V.M. Volosov, Averaging in systems of ordinary differential equations. Russian Math. Surveys 17 (1962) 3–

126.
62. Y. Sibuya, The Gevrey asymptotics in the case of singular perturbations. J. Diff. Equations 165 (2000) 255–

314.
63. R.M. Temam and D. Wirosoetisno, On the solutions of the renormalized equations at all orders. Adv. Diff.

Equations 8 (2003) 1005–1024.
64. C.M. Andersen and J.F. Geer, Power series expansions for the frequency and period of the limit cycle of

the van der Pol equation. SIAM J. Appl. Math. 42 (1982) 678–693.
65. L.A. Rubenfeld, On a derivative-expansion technique and some comments on multiple scaling in the asymp-

totic approximation of solutions of certain differential equations. SIAM Rev. 20 (1978) 79–105.
66. R. Kuske, Multi-scale analysis of noise-sensitivity near a bifurcation. In: N.S. Namachchivaya and Y.K. Lin

(eds.), IUTAM Symposium on Nonlinear Stochastic Dynamics. Volume 110 of Solid Mech. Appl., Dordrecht:
Kluwer Academic Publishers (2003) pp. 147–156.

67. K. Nipp, An algorithmic approach for solving singularly perturbed initial value problems. In: U. Kirchgraber
and W.O. Walther (eds.), Dynamics Reported, Volume 1 New York: John Wiley & Sons (1988) pp. 173–263.

68. H.-O. Kreiss and J. Lorenz, On the existence of slow manifolds for problems with different timescales. Philos.
Trans. R. Soc. London A 346 (1994) 159–171.

69. V.V. Strygin and V.A. Sobolev, Separation of Motions by the Method of Integral Manifolds (in Russian).
Moscow: “Nauka” (1988) 256 pp.



336 B. Mudavanhu et al.

70. C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed
systems and legacy codes. SIAM J. Appl. Dyn. Syst. (2005) in Press.

71. A.C. King, J. Billingham and S.R. Otto, Differential Equations: Linear, Nonlinear, Ordinary, Partial.
Cambridge: Cambridge University Press (2003) xii + 541 pp.

72. R. Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 4th
edition. Upper Saddle River: Pearson Prentice Hall, (2004) xviii + 769 pp.

73. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for
Ordinary Differential Equations. Volume 31 of Springer Series in Computational Mathematics. Berlin: Springer-
Verlag (2002) xiv + 515 pp.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


